
Tivoli Application Dependency Discovery
Manager
Version 7.3

Discovery Library Adapter
Developer's Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
19.

Edition notice

This edition applies to version 7, release 3 of IBM® Tivoli® Application Dependency Discovery Manager (product number
5724-N55) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2006, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables... v

About this information... vii
Conventions used in this information center... vii
Terms and definitions...vii

Chapter 1. Discovery Library Adapter Developer's Guide...1
Using Discovery Library Adapters..1

Discovery Library Adapter overview.. 1
IdML schema.. 2
When to use a Discovery Library Adapter.. 3
File naming conventions...3
Integration overview.. 4
Creating a Discovery Library Adapter...4
IBM Discovery Library IdML Certification tool...6

Understanding the DLA APIs... 8
Using the DLA adapter API...8
Managing configuration parameters and discoveries... 9
Managing property change listeners... 11
Managing Discovery Library Adapter states.. 11
Using the DLA Book Production API.. 12
Book properties and methods... 12
Managed element properties and methods.. 15
Attribute properties and methods... 16
Relationship properties and methods... 17
Common Data Model helper methods...18

Notices..19
Trademarks.. 20

 iii

iv

Tables

1. Differences between IdML books and TADDM XML files... 2

2. Configuration parameters and discovery methods.. 9

3. Property change listener methods... 11

4. State methods... 11

5. Book production properties.. 12

6. Book production methods...13

7. Managed element properties..15

8. Managed element methods.. 15

9. Attribute properties...16

10. Attribute methods...17

11. Relationship properties...17

12. Relationship methods... 18

 v

vi

About this information

The purpose of this PDF document version is to provide the related topics from the information center in a
printable format.

Conventions used in this information center
In the IBM Tivoli Application Dependency Discovery Manager (TADDM) documentation certain
conventions are used. They are used to refer to the operating system-dependent variables and paths, the
COLLATION_HOME directory, and the location of the collation.properties file, which is referenced
throughout the TADDM documentation, including in the messages.

Operating system-dependent variables and paths

In this information center, the UNIX conventions are used for specifying environment variables and for
directory notation.

When using the Windows command line, replace $variable with %variable% for environment variables,
and replace each forward slash (/) with a backslash (\) in directory paths.

If you are using the bash shell on a Windows system, you can use the UNIX conventions.

COLLATION_HOME directory

TADDM root directory is also referred to as the COLLATION_HOME directory.

On operating systems such as AIX® or Linux®, the default location for installing TADDM is the /opt/IBM/
taddm directory. Therefore, in this case, the $COLLATION_HOME directory is /opt/IBM/taddm/dist.

On Windows operating systems, the default location for installing TADDM is the c:\IBM\taddm directory.
Therefore, in this case, the %COLLATION_HOME% directory is c:\IBM\taddm\dist.

Location of collation.properties file

The collation.properties file contains TADDM server properties and includes comments about each
of the properties. It is located in the $COLLATION_HOME/etc directory.

Terms and definitions
Refer to the following list of terms and definitions to learn about important concepts in the IBM Tivoli
Application Dependency Discovery Manager (TADDM).

access collection
A collection that is used to control the access to configuration items and permissions to modify
configuration items. You can create access collections only when data-level security is enabled.

asynchronous discovery
In TADDM, the running of a discovery script on a target system to discover systems that cannot be
accessed directly by the TADDM server. Because this discovery is performed manually, and separately
from a typical credentialed discovery, it is called "asynchronous".

business application
A collection of components that provides a business functionality that you can use internally,
externally, or with other business applications.

CI
See configuration item.

collection
In TADDM, a group of configuration items.

© Copyright IBM Corp. 2006, 2020 vii

configuration item (CI)
A component of IT infrastructure that is under the control of configuration management and is
therefore subject to formal change control. Each CI in the TADDM database has a persistent object
and change history associated with it. Examples of a CI are an operating system, an L2 interface, and
a database buffer pool size.

credentialed discovery
TADDM sensor scanning that discovers detailed information about the following items:

• Each operating system in the runtime environment. This scanning is also known as Level 2
discovery, and it requires operating system credentials.

• The application infrastructure, deployed software components, physical servers, network devices,
virtual systems, and host data that are used in the runtime environment. This scanning is also
known as Level 3 discovery, and it requires both operating system credentials and application
credentials.

credential-less discovery
TADDM sensor scanning that discovers basic information about the active computer systems in the
runtime environment. This scanning is also known as Level 1 discovery, and it requires no credentials.

Data Management Portal
The TADDM web-based user interface for viewing and manipulating the data in a TADDM database.
This user interface is applicable to a domain server deployment, to a synchronization server
deployment, and to each storage server in a streaming server deployment. The user interface is very
similar in all deployments, although in a synchronization server deployment, it has a few additional
functions for adding and synchronizing domains.

discover worker thread
In TADDM, a thread that runs sensors.

Discovery Management Console
The TADDM client user interface for managing discoveries. This console is also known as the Product
Console. It is applicable to a domain server deployment and to discovery servers in a streaming server
deployment. The function of the console is the same in both of these deployments.

discovery server
A TADDM server that runs sensors in a streaming server deployment but does not have its own
database.

domain
In TADDM, a logical subset of the infrastructure of a company or other organization. Domains can
delineate organizational, functional, or geographical boundaries.

domain server
A TADDM server that runs sensors in a domain server deployment and has its own database.

domain server deployment
A TADDM deployment with one domain server. A domain server deployment can be part of a
synchronization server deployment.

In a domain server deployment, the following TADDM server property must be set to the following
value:

com.collation.cmdbmode=domain

launch in context
The concept of moving seamlessly from one Tivoli product UI to another Tivoli product UI (either in a
different console or in the same console or portal interface) with single sign-on and with the target UI
in position at the proper point for users to continue with their task.

Level 1 discovery
TADDM sensor scanning that discovers basic information about the active computer systems in the
runtime environment. This scanning is also known as credential-less discovery because it requires no
credentials. It uses the Stack Scan sensor and the IBM® Tivoli® Monitoring Scope sensor. Level 1
discovery is very shallow. It collects only the host name, operating system name, IP address, fully

viii About this information

qualified domain name, and Media Access Control (MAC) address of each discovered interface. Also,
the MAC address discovery is limited to Linux on System z® and Windows systems. Level 1 discovery
does not discover subnets. For any discovered IP interfaces that do not belong to an existing subnet
that is discovered during Level 2 or Level 3 discovery, new subnets are created based on the value of
the com.collation.IpNetworkAssignmentAgent.defaultNetmask property in the
collation.properties file.

Level 2 discovery
TADDM sensor scanning that discovers detailed information about each operating system in the
runtime environment. This scanning is also known as credentialed discovery, and it requires operating
system credentials. Level 2 discovery collects application names and the operating system names and
port numbers that are associated with each running application. If an application has established a
TCP/IP connection to another application, this information is collected as a dependency.

Level 3 discovery
TADDM sensor scanning that discovers detailed information about the application infrastructure,
deployed software components, physical servers, network devices, virtual systems, and host data
that are used in the runtime environment. This scanning is also known as credentialed discovery, and
it requires both operating system credentials and application credentials.

multitenancy
In TADDM, the use by a service provider or IT vendor of one TADDM installation to discover multiple
customer environments. Also, the service provider or IT vendor can see the data from all customer
environments, but within each customer environment, only the data that is specific to the respective
customer can be displayed in the user interface or viewed in reports within that customer
environment.

Product Console
See Discovery Management Console.

script-based discovery
In TADDM, the use, in a credentialed discovery, of the same sensor scripts that sensors provide in
support of asynchronous discovery.

SE
See server equivalent.

server equivalent (SE)
A representative unit of IT infrastructure, defined as a computer system (with standard
configurations, operating systems, network interfaces, and storage interfaces) with installed server
software (such as a database, a web server, or an application server). The concept of a server
equivalent also includes the network, storage, and other subsystems that provide services to the
optimal functioning of the server. A server equivalent depends on the operating system:

Operating system Approximate number of CIs

Windows 500

AIX 1000

Linux 1000

HP-UX 500

Network devices 1000

storage server
A TADDM server that processes discovery data that is received from the discovery servers and stores
it in the TADDM database. The primary storage server both coordinates the discovery servers and all
other storage servers and serves as a storage server. All storage servers that are not the primary are
called secondary storage servers.

About this information ix

streaming server deployment
A TADDM deployment with a primary storage server and at least one discovery server. This type of
deployment can also include one or more optional secondary storage servers. The primary storage
server and secondary storage servers share a database. The discovery servers have no database.

In this type of deployment, discovery data flows in parallel from multiple discovery servers to the
TADDM database.

In a streaming server deployment, the following TADDM server property must be set to one of the
following values:

• com.collation.taddm.mode=DiscoveryServer
• com.collation.taddm.mode=StorageServer

For all servers except for the primary storage server, the following properties (for the host name and
port number of the primary storage server) must also be set:

• com.collation.PrimaryStorageServer.host
• com.collation.PrimaryStorageServer.port

If the com.collation.taddm.mode property is set, the com.collation.cmdbmode property must not be
set or must be commented out.

synchronization server
A TADDM server that synchronizes discovery data from all domain servers in the enterprise and has its
own database. This server does not discover data directly.

synchronization server deployment
A TADDM deployment with a synchronization server and two or more domain server deployments,
each of which has its own local database.

In this type of deployment, the synchronization server copies discovery data from multiple domain
servers one domain at a time in a batched synchronization process.

In a synchronization server deployment, the following TADDM server property must be set to the
following value:

com.collation.cmdbmode=enterprise

This type of deployment is obsolete. Therefore, in a new TADDM deployment where more than one
server is needed, use the streaming server deployment. A synchronization server can be converted to
become a primary storage server for a streaming server deployment.

TADDM database
In TADDM, the database where configuration data, dependencies, and change history are stored.

Each TADDM server, except for discovery servers and secondary storage servers, has its own
database. Discovery servers have no database. Storage servers share the database of the primary
storage server.

TADDM server
A generic term that can represent any of the following terms:

• domain server in a domain server deployment
• synchronization server in a synchronization server deployment
• discovery server in a streaming server deployment
• storage server (including the primary storage server) in a streaming server deployment

target system
In the TADDM discovery process, the system to be discovered.

utilization discovery
TADDM sensor scanning that discovers utilization information for the host system. A utilization
discovery requires operating system credentials.

x Application Dependency Discovery Manager: DLA Developer's Guide

Chapter 1. Discovery Library Adapter Developer's
Guide

Using Discovery Library Adapters
The Discovery Library provides an integration mechanism for communicating and sharing information
about discovered resources and relationships within the enterprise.

The Discovery Library consists of the following components:
Discovery Library XML schema specification

This schema is called the Identity Markup Language (IdML), which defines a set of operations for
creating, updating, and deleting objects in the Common Data Model (CDM).

Discovery Library Adapter (DLA)
DLAs are application code written to extract discovered resource and relationship data, and then
transformed to the IdML specification.

Discovery Library books
These are XML files formatted according to the IdML that contain discovery information, including the
identity of resources and their relationships.

Discovery Library File Store (DLFS)
This is a repository for Discovery Library books.

The following sequence describes the Discovery Library information flow:

1. A Management Software System (MSS) discovers resources and relationships in an enterprise
environment.

2. A DLA creates an IdML representation of the MSS application data (resources and relationships). The
DLA can also request discovery updates, as required.

3. The DLA copies the IdML book to the DLFS enabling readers, such as the bulk load program, to access
the resource and relationship information.

Discovery Library Adapter overview
A Discovery Library Adapter is a runtime component in the Discovery Library that uses mechanisms in
Management Software Systems (MSS) to extract specific details about resources and resource
relationships. The purpose of Discovery Library Adapters is to discover and maintain the resources and
resource relationships that support business applications.

Discovery Library Adapters transform this information into files that conform to the Identity Markup
Language (IdML) schema and store the resulting IdML books in the Discovery Library File Store.

IdML schema representation

IdML is the Discovery Library XML schema specification. Discovery Library Adapters output files in IdML
format, which contain information about the Management Software System (MSS) and operation sets that
define groups of operations for creating, updating, and deleting objects in the Common Data Model (CDM).

The IdML schema references the Common Data Model schema, which describes CDM model objects and
relationships and their corresponding representations in XML format.

IdML books

IdML books, also known as Discovery Library books, are XML files that contain information about
resources and resource relationships written to conform to the IdML schema. Each IdML book represents
the distinct view of the resources and relationships at a point in time. Collections of IdML books will
therefore often represent overlapping views of the environment. Readers of IdML books are therefore

© Copyright IBM Corp. 2006, 2020 1

responsible for merging these views into a consistent whole that is meaningful in the context of the
application.

IdML books uniquely identify the author of the discovery data. An IdML book can describe either delta or
complete (also known as refresh) discoveries. See the following section for more information. The
Discovery Library provides an application programming interface (API) for the creation of well-formed
IdML books, so Discovery Library Adapter developers can focus on the extraction and transformation of
data.

IdML operation semantics

Operation sets stored in IdML books can represent the following semantics:
Delta

Operations in the IdML book represent changes and updates to existing data imported during
previous runs of IdML books for a particular Management Software System.

Refresh
Operations in the IdML book represent a refresh operation of existing data imported from previous
runs of IdML books for a particular Management Software System. Resources present from prior runs
but not present in the refresh operation are removed. Refresh files represent a snapshot in time,
replacing existing information with new data.

Discovery Library File Store

A Discovery Library File Store (DLFS) is a repository for Discovery Library books (IdML books). A Discovery
Library File Store can reside on a local system or can be accessible through a network connection. After a
Discovery Library Adapter writes a book to a Discovery Library File Store, the book should not be
modified.

IdML schema
The discovery library uses an XML format called Identity Markup Language (IdML) to enable data
collection. Access to the IdML code is provided through the discovery library adapters.

The XML Schema Definition (XSD) describes the operations that are necessary to take data about
resource and relationship instances from an author and instantiate it into the repository of a reader. This
schema defines the operations that occur on instances of resources and relationships. To facilitate future
model versions and updates, this schema references an external schema, the Common Data Model, to
define the resource and relationships. All files that are in the Discovery Library conform to the IdML
schema. Books in the Discovery Library that do not validate against the IdML schema are in error and
cannot be used by readers. TADDM is an example of a reader.

The IdML schema is designed to separate the operations from the model specification to enable the
schema to handle updates to the model specification without changing the IdML schema. The TADDM
reader treats the individual elements within the operations as a transaction.

TADDM XML and IdML

There are some differences between IdML files and TADDM XML files. The following table summarizes the
differences.

Table 1. Differences between IdML books and TADDM XML files

IdML books TADDM XML files

IdML is a standard that supports objects defined in
the Common Data Model. ACLs, users, scopes, and
schedules are not supported.

TADDM XML files is an application format that
supports objects defined in the Common Data
Model and TADDM. ACLs, users, scopes, and
schedules are supported.

Operation codes include delta (default), and
refresh.

There are no operation codes. The delta behavior is
the default.

2 Application Dependency Discovery Manager: DLA Developer's Guide

Table 1. Differences between IdML books and TADDM XML files (continued)

IdML books TADDM XML files

In-file MSS information is supported. MSS information can be provided through the
command line.

Relationships have to be defined explicitly. Implicit relationships can and must also be
defined.

XML objects are not nested. XML objects are nested.

Virtual, relative IDs are supported. Relationships
can link configuration items defined with relative
IDs.

Relative IDs are not supported. Real objectGUID is
supported. Relationships must link configuration
items identified with GUID or naming attributes.

When to use a Discovery Library Adapter
Discovery Library Adapters offer specific advantages to help you integrate enterprise information with the
IBM TADDM database. Learn when a DLA is most useful.

Consider creating a DLA in the following cases:

• A discovery tool exists that can create a data file containing discovered resources and relationships.
• The solution requires a loose integration with existing management technology.
• The environment demands a quick integration solution.
• There is a need to use an existing discovery scheduler.
• There is a requirement to minimize native environment interruptions.

Alternatively, consider using the TADDM API as an integration solution in the following cases:

• The environment requires real time storage of information in the TADDM database.
• The solution would benefit from making interactive calls to the TADDM database to store information.
• The system requires synchronous acknowledgement that creates, updates, and deletes have

completed successfully in the TADDM database.
• There is a need to reduce the overhead and delay of processing books and data.

In general, the TADDM APIs provide more timely, synchronous, programmatic-style integration. DLAs
provide more loosely coupled, asynchronous implementations, offering greater flexibility in many
environments. Using DLAs, you can also maintain a degree of technology independence from the TADDM
implementation, including the TADDM API, the programming model, and specific runtime aspects.

File naming conventions
Identity Markup Language (IdML) books are stored in plain text XML files which must follow a consistent
file naming convention. The file name includes information to uniquely identify the book within the
Discovery Library File Store. This information helps developers and administrators to quickly identify the
source and creation date of the discovery data.

IdML book names consist of the following segments:

• The application code of the Management Software System (MSS).

Every Discovery Library Adapter requires an application code (10 character maximum). Include the
short name of the application together with the version.

• The host name of the MSS.
• An ISO 8601 time stamp UTC (Coordinated Universal Time), with colons (:) replaced by dots (.).
• The text "refresh" when the book contains a refresh operation.
• A file name extension of .xml.

Chapter 1. Discovery Library Adapter Developer's Guide 3

Sample file names

The following file name example is for an IdML book that is in the Discovery Library:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.xml

The following file name example is for an IdML book that is in the Discovery Library that contains a refresh
operation:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.refresh.xml

Naming files while copying to a Discovery Library

There is a specific naming convention that only applies during the writing and copying of IdML books to
the Discovery Library. In this case, the file name of the IdML book must contain the .partial suffix, as
shown in the following example:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.xml.partial

After the file is written or copied to the Discovery Library File Store, rename the file name by removing
the .partial suffix, as shown in the following example:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.xml

Integration overview
Integrating a Management Software System (MSS) with the TADDM database consists of two procedures,
which are mapping the MSS data to the Common Data Model (CDM) and creating a DLA that implements
the model mapping and generates an IdML book.

Mapping the MSS data to the CDM begins with collecting and analyzing the source data, as assembled by
the MSS, with the intent of understanding the content and purpose of the information. After you do this,
you can identify corresponding model objects within the CDM and determine how to apply the CDM
naming rules to create unique instances of the data.

In the process of defining model objects, you can look for additional relationships between objects to
capture maximum information about the environment. As part of model mapping, you must also verify
that the MSS data is consistent with attribute conventions within the CDM.

Note: The MSS is responsible for performing discovery, monitoring resources, and capturing the data.

To create a DLA, use the model map that you created earlier to define a set of operations that creates,
updates, and deletes data within the CDM. The output of the DLA is a well-formed IdML book, in XML
format, that resides in the Discovery Library available to reader applications, such as the Bulk Load
program.

Creating a Discovery Library Adapter
Learn how to create a Discovery Library Adapter, how to develop a model map using data from the
Management Software System (MSS), and how to use the DLA API to build the Identity Markup Language
(IdML) book.

Procedure

To create a DLA, complete the following steps:
1. Collect a representative sample (complete, if possible) of the type of data generated by the MSS.
2. Determine the type of resources and relationships supplied by the MSS.

It is important to understand the content and purpose of the data generated by the MSS. For each
item, determine the following:

• Is the item a specific resource, a category of resources, or a relationship?
• How does the MSS use the item?

4 Application Dependency Discovery Manager: DLA Developer's Guide

• How was the item discovered?

You can use this information to more accurately identify the type of model objects that should
represent the item.

3. Identify model objects within the Common Data Model (CDM) corresponding to entities within the
MSS data.

Identifying model objects is part of the process of creating a mapping between the CDM and the MSS
data. For example, if the MSS contains a data item with an attribute of Windows, you can begin by
deriving the following information to represent this data item:

• There is an operating system of type Microsoft Windows.
• There is a host computer system.
• There is a relationship between the operating system and the computer system.

Continue this process of identifying model objects present within the MSS data, examining the
targets of explicit and implied relationships. For instance, if there is a source data item representing a
computer system, determine additional characteristics (such as the IP address) of the computer
system represented in the data. Document information about the MSS data and potential model
objects for future reference.

4. For each model object you identify, use the CDM naming rules to determine the attributes and
relationships that are required to create an instance of a resource.

CDM naming rules define a set of attributes and relationships that provide the necessary naming
context to create a unique identity for a model object. Potentially, there are multiple naming rules for
each model object; each object instance must use at least one of the rules for each object type when
mapping application resource data.

In some instances, the MSS data might not include enough information to provide unique
identification of a resource. In this case, naming rules require that the resource be named not only
with characteristics that are specific to it, but also with characteristics of the resource within the
context of another instance.

For example, one of the naming rules for operating system type and operating system name specifies
that the naming context be an instance of a computer system. This means that in order to create a
mapping to an operating system name and operating system type, you must also define an instance
of the associated computer system, along with the relationship between the computer system and
the operating system.

Naming contexts are always specified in terms of other resources, relationships to other resources,
or the attributes of other resources.

5. Apply CDM relationships between currently identified model objects, as appropriate.

Refer to the UML diagram for the CDM to determine potential model object relationships. Note that
relationships are hierarchical, which means that relationships between model objects are
automatically valid for subclasses of the model objects. For example, a runsOn relationship between
an operating system and a computer system is valid for operating system subclasses. You do not
need to define explicit relationships that mirror the hierarchy of the CDM.

6. Verify that the MSS data is consistent with the attribute conventions used to store existing
information in the CDM and reconcile them as necessary.

Attribute content consistency is critical. When verifying attribute content consistency, consider the
following points:

• The format of the data, including the use of dashes, dots, and other delimiters
• Whether special characters are present
• Units of measure, if appropriate
• Case sensitivity and whether the data is typically in upper, lower, or mixed case.

For example, consider the case of serial numbers for computer systems. One technology might
require the use of only capital letters and dashes, while another technology might consider dashes to

Chapter 1. Discovery Library Adapter Developer's Guide 5

be restricted characters. Make note of any data processing requirements uncovered during the model
mapping stage.

7. Create a model mapping document and map the data from the MSS to the CDM.

Use the Data Model Template as a guide for creating this document. Completing the following steps
to creating a model mapping document:

a) Define a usage scenario.

You must create at least one scenario to describe the data usage in the mapping document. The
scenario helps you validate that you are gathering the necessary information from the MSS. For
example, the MSS might be collecting information about operating systems, but you might also
need to know about running instances of application servers.

A sample scenario could read as follows: The instance data based on classes x and y enables
Application A to automate application mapping in the provisioning module.

b) List all CDM attribute content conventions.
c) Specify the CDM classes (model objects) and associated attributes used.
d) List the relationships provided in the MSS data.
e) List CDM classes with their associated naming policy and naming rules.

8. Use the model mapping document to define operations and operation sets for creating, modifying,
and deleting model objects (managed elements).

9. Use the DLA API to build the IdML book.

The DLA API consists of an adapter API and a book generation API. You are not required to use the
DLA API, but the production API offers considerable assistance in creating well-formed IdML books
conforming to the IdML schema. Similarly, the adapter API offers common interfaces for command
and control, and other operations such as starting and stopping discoveries. See “Understanding the
DLA APIs” on page 8 for more information.

As part of creating the IdML book, you must also assign a file name to the Discovery Library book. See
“File naming conventions” on page 3 for complete information about Discovery Library book file
naming conventions.

10. Save the book to the Discovery Library File Store by completing the following steps. You must have
write and file rename permissions on the file store.

a) Append a .partial suffix to the name of the book when saving it to the Discovery Library.

Books copied or delivered to the Discovery Library File Store must include the .partial suffix
during the copy operation, for example:

APPAv1.1.host.abcxyz.com.2006-03-07T12.05.00Z.xml.partial

b) After the book is completely written to the Discovery Library, remove the .partial suffix from
the file name.

IBM Discovery Library IdML Certification tool
IBM Discovery Library IdML Certification tool reviews Discovery Library books. It verifies whether the
content of the books complies with the IdML specification. If any errors are found, the certification tool
reports the errors to the console.

The tool runs the following certification tasks:

• Certifies a book against the IdML and CDM schemas.
• Certifies that all managed elements specify a valid set of naming rule attributes, so that at least one

valid naming rule is formed.
• Certifies relationships in the following ways:

– Certifies that the source and target resources of each relationship reference an existing management
element.

6 Application Dependency Discovery Manager: DLA Developer's Guide

– Certifies that all relationships reference valid source and target classes.
• Certifies that there are no missing superiors. If a management element references a superior, the

superior management element must exist in the book.
• Certifies the attributes in the following ways:

– Certifies that a managed element instance has at least one attribute.
– Certifies that no attribute is empty.

• Provides statistics on the number of classes and relationships that are used.

Using IBM Discovery Library IdML Certification tool
To use the tool, complete the following steps:

1. Go to the $COLLATION_HOME/sdk/dla/validator/v2 directory.
2. Run the following command:

java -jar idmlcert.jar <options>

Examples of the command options

• To display the usage information, run the following command:

java -jar idmlcert.jar -?

• To certify the mytestfile.xml file, which is in the current directory, run the following
command:

java -jar idmlcert.jar mytestfile.xml

• To certify the files that are listed in the books.lst file, which is in the /dla directory, run
the following command:

 java -jar idmlcert.jar -f /dla/books.lst

where the books.lst file contains the following files:

– /dla/file1.xml
– /dla/file2.xml

• To certify the files that are listed in the /dla/books.lst file, which is in the current
directory and, which uses the idmlcert.properties properties file, run the following
command:

 java -jar idmlcert.jar -p idmlcert.properties

where the idmlcert.properties file contains the following property:

com.ibm.dl.core.certification.bookListFilename=/dla/books.lst

• To certify the bigBook.xml book file, which has hundreds of megabytes, run the following
command:

 java -Xmx2560m -jar idmlcert.jar bigBook.xml

where the value of the Xmx option must be at least 4-6 times bigger than the size of the book.

See also The bulk load program and Delta books utility program topics is the TADDM User's Guide.

Chapter 1. Discovery Library Adapter Developer's Guide 7

Understanding the DLA APIs
The Discovery Library provides the two application programming interfaces (API) to facilitate the
integration of discovery data from a Management Software System into the Discovery Library, which are
Adapter API and Book Production API.
Adapter API

Use this API to start and stop discoveries, as well as create transient or long-running Discovery
Library Adapters. See “Using the DLA adapter API” on page 8 for more information.

Book Production API
Use this API to create well-formed IdML books conforming to the IdML schema. See “Using the DLA
Book Production API” on page 12 for more information.

You can use the adapter and book production APIs either in conjunction or independently of each other.

Using the DLA adapter API
You can use the DLA adapter API with a Management Software System (MSS).

Before you begin
To use the APIs described in this document, make sure the .jar files in the
$COLLATION_HOME/sdk/dla/dla_utility directory are in a location listed on the CLASSPATH of your
system.

About this task

Each MSS typically has its own conventions and requirements regarding configuration, deployment,
control, and security. You can use the DLA adapter API to develop discovery code that can interface with
an MSS and be reused in different runtime environments. The adapter API is implemented through the
DiscoveryLibraryAdapter abstract class that provides methods for all supported Discovery Library Adapter
functions.

Procedure

To create a DLA for an MSS, complete the following steps:
1. Extend the DiscoveryLibraryAdapter abstract class and override the implementations for the
getCapabilities and getConfigParams class scope methods and the getState and
stopDiscovery methods.

2. Provide implementations for the abstract setConfigParams and startDiscovery methods.

These methods are described in “Managing configuration parameters and discoveries” on page 9.
3. Override the addPropertyChangeListener and removePropertyChangeListener methods.

You are not required to override these methods since addPropertyChangeListener and
removePropertyChangeListener are concrete methods in DiscoveryLibraryAdapter class.
“Managing property change listeners” on page 11 describes the property change listener methods.

4. Implement the start, pause, resume, and shutdown methods for long-running DLAs.

A DLA can run in either transient or long-running mode. A transient DLA can be thought of as running a
one-time discovery, initializing, performing the discovery operation according to the configuration
properties and, when completed, shutting down. Transient DLAs do not maintain an internal state that
can be interrogated.

A long-running DLA maintains an internal state over time, which you can control using the state
manipulation methods including start, pause, resume, and shutdown. A long-running DLA can
perform discoveries when it is in the running state through a call to the startDiscovery method.
These methods for writing long-running DLAs are described in “Managing Discovery Library Adapter
states” on page 11.

8 Application Dependency Discovery Manager: DLA Developer's Guide

Managing configuration parameters and discoveries
You can use the methods described in this section to determine and set the configuration parameters
required by an instance of a DLA. You can also use the methods to start and stop a discovery, and
determine the state of the DLA. Using these parameters is optional for the creation of a DLA.

Table 2 on page 9 describes the methods for managing configuration parameters and discoveries.

Table 2. Configuration parameters and discovery methods

Method Description

getCapabilities() This a class scope method that returns a set of
properties indicating the capabilities of the DLA.
These capabilities include the types of discoveries
are supported, along with whether the DLA can
support transient or long-running behaviors. By
default this method returns null (indicating that the
capabilities of the DLA are unknown).

getConfigParams() This a class scope method that returns a structure
specifying the configuration parameters required
by an instance of the DLA. By default this method
returns null (indicating that the configuration
parameters of the Discovery Library Adapter are
unknown).

Chapter 1. Discovery Library Adapter Developer's Guide 9

Table 2. Configuration parameters and discovery methods (continued)

Method Description

getState() Retrieve the current state of the DLA. The state
values for a DLA are:

0 (Stopped)
The DLA is not currently performing any
function and will continue in this state until
started using the start() method. By default,
this is the initial state of a DLA.

1 (Starting)
The DLA is in the process of starting as a result
of a call to the initialize or start methods.

2 (Running)
The DLA is running. This does not imply that a
discovery is in progress, only that the module is
active and can perform discoveries.

3 (Pausing)
The DLA is in the process of pausing as a result
of a call to the pause() method.

4 (Paused)
The DLA is paused. You can use this state with
DLAs that maintain internal state variables
whose values persist across calls to the
pause() and resume() methods.

5 (Resuming)
The DLA is in the process of resuming as a
result of a call to the resume() method.

6 (Stopping)
The DLA is in the process of stopping as a
result of a call to the shutdown() method.

7 (Recovering)
A DLA that should be running is attempting to
recover from an internal error.

8 (Aborted)
The DLA ended abnormally and is not
attempting to recover.

9 (Discovering)
The DLA is currently in the process of
performing a discovery.

setConfigParams(configParams) Initialize the API by providing a completed set of
configuration properties that contain sufficient
information for the API to connect to and extract
data from its data sources.

startDiscovery() Start a discovery using the set of parameters
specified using the setConfigParams() method.
If successful, the DLA returns a value identifying
the discovery that has been started.

stopDiscovery(discoveryId) Stop a previously started discovery.

10 Application Dependency Discovery Manager: DLA Developer's Guide

Managing property change listeners
The methods described in this section enable you to add and remove listeners for notification when DLA
properties change. Using these parameters is optional for the creation of a DLA.

The DiscoveryLibraryAdapter class defines a single property, though you can add additional properties
that support notification.

Table 3 on page 11 describes the methods for managing property change listeners.

Table 3. Property change listener methods

Method Description

addPropertyChangeListener(propertyName
, listener)

Register an object for notification when a DLA
property changes.

removePropertyChangeListener(property
Name, listener)

Unregister an object from the list of those to be
notified when a DLA property changes.

Managing Discovery Library Adapter states
You can use the methods described in this section to start, pause, resume, and shutdown a long-running
DLA. Using these parameters is optional for the creation of a DLA.

Table 4 on page 11 describes the methods for managing the state of DLAs.

Table 4. State methods

Method Description

pause() Pause a long-running DLA. The return value is the
state of the DLA after executing the call, either 3
(Pausing) or 4 (Paused) depending on whether the
DLA is capable of immediately pausing.

By default, this method returns the current value of
the state attribute.

resume() Resume a long-running DLA. The return value is the
state of the DLA after executing the call, either 5
(Resuming) or 2 (Running) depending on whether
the DLA is capable of immediately resuming from a
paused state.

By default, this method returns the current value of
the state attribute.

shutdown() Shut down a long-running DLA. The return value is
the state of the DLA after executing the call, either
6 (Stopping) or 0 (Stopped) depending on whether
the DLA is capable of immediately stopping from
its current state.

By default, this method returns the current value of
the state attribute.

Chapter 1. Discovery Library Adapter Developer's Guide 11

Table 4. State methods (continued)

Method Description

start() Start a DLA that has already been Initialized The
return value is the state of the DLA after executing
call, either 1 (Starting) or 2 (Running) depending on
whether the DLA is capable of immediately
entering a running state from a stopped state.

By default, this method returns the current value of
the state attribute.

Using the DLA Book Production API
You can use the DLA book production API to create well-formed Identity Markup Language (IdML) books
conforming to the IdML schema.

Procedure

To create IdML books, complete the following steps:
1. Create an instance of the IDMLBook class and initialize it by calling the create(), getBookName(),

and openBook() methods.

See “Book properties and methods” on page 12 for more information.
2. Add operation sets to the book by calling the openOperationSet() and closeOperationSet()

methods.

See “Book properties and methods” on page 12 for more information.
3. Add operations to the operation sets by calling the openCreateOperation(),
openDeleteOperation(), openModifyOperation(), and openRefreshOperation() methods.

See “Book properties and methods” on page 12 for more information.
4. Within each operation, such as create or delete, add managed elements and relationships using the
addManagedElement() and addRelationship() methods.

See “Managed element properties and methods” on page 15 and “Relationship properties and
methods” on page 17 for more information.

5. Call the appropriate close method to complete each operation and operationSet, as required.
6. Close the book and complete production by calling the closeBook() method.

Book properties and methods
You can use the book production properties and methods to open and close IdML books, define and
specify operation sets and operations, and add managed elements and relationships to operations.

Properties

Table 5 on page 12 describes the book properties for the DLA production API.

Table 5. Book production properties

Property Description

source The cdmManagementSoftwareSystem instance
that identifies the source of the discovery data
contained in the book.

timestamp The IdML book creation time, specified using UTC.

12 Application Dependency Discovery Manager: DLA Developer's Guide

Methods

Table 6 on page 13 describes the book production methods.

Table 6. Book production methods

Method Description

addManagedElement(managedElement) Append an IDMLManagedElement to the current
operation in the current operationSet. It is an error
to call this method if there is no current operation.
The method returns a reference to the IDMLBook.

addManagedElements(managedElements) Append a list of IDMLManagedElements to the
current operation in the current operationSet. It is
an error to call this method if there is no current
operation. The method returns a reference to the
IDMLBook.

addRelationship(relationship) Append an IDMLRelationship to the current
operation in the current operationSet. It is an error
to call this method if there is no current operation.
The method returns a reference to the IDMLBook.

addRelationships(relationships) Append a list of IDMLRelationships to the current
operation in the current operationSet. It is an error
to call this method if there is no current operation.
The method returns a reference to the IDMLBook.

closeBook() Complete the book and close the file. It is an error
to call this method unless the book has previously
been opened using the openBook() method. It is
also an error to call this method if the last call to
openOperationSet() was not followed by a call
to closeOperationSet(). The method returns a
reference to the IDMLBook.

closeOperation() Complete the current operation, as specified by the
most recent call to the
openCreateOperation(),
openDeleteOperation(), or
openModifyOperation() method. Following
this call, there is no current operation defined until
a subsequent call to open an operation.

It is an error to call this method if there is no open
operation. The method returns a reference to the
IDMLBook.

closeOperationSet() Complete the current operationSet. Following this
call, there is no current operationSet defined until a
subsequent openOperationSet call. It is an error to
call this method if there is no open operationSet.
The method returns a reference to the IDMLBook.

Chapter 1. Discovery Library Adapter Developer's Guide 13

Table 6. Book production methods (continued)

Method Description

create(source, timestamp,
modelSchemaURI, modelSchemaVersion)

This is a class scope method that creates an
instance of an IDMLBook. The method accepts the
following parameters:

source
The cdmManagementSoftwareSystem instance
that identifies the source of discovery data in
the book.

timestamp
The UTC time when the book was created.

modelSchemaURI
The URI for the schema to be used to validate
the instances of managed elements and
relationships in the operations.

create(source, timestamp) This is a class scope method that creates an
instance of an IDMLBook. Similar to
create(source, timestamp,
modelSchemaURI, modelSchemaVersion),
this method uses the base Common Data Model
schema for validation instead of the user-specified
modelSchemaURI and modelSchemaVersion.

getBookName() Retrieve a character string with a name that
conforms to the conventions for IdML book file
names, based on the type, source, and timestamp
properties.

getSource() Retrieve the value of the source property.

getTimestamp() Retrieve the value of the timestamp property.

openBook(outputStream) Retrieve a reference to the IDMLBook which serves
as the output stream to which the contents will be
written. You can only call this method once for a
particular IDMLBook.

openCreateOperation(timestamp) Begin a create operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IDMLBook.

openDeleteOperation(timestamp) Begin a delete operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IDMLBook.

openModifyOperation(timestamp) Begin a modify operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IDMLBook.

14 Application Dependency Discovery Manager: DLA Developer's Guide

Table 6. Book production methods (continued)

Method Description

openOperationSet(transactional) Open a new operationSet. The transactional
parameter specifies whether the reader of the
book should treat all operations in the
operationSet as one transaction. You must call the
openBook() method before calling
openOperationSet. It is also an error to call the
openOperationSet() mehtod if there is an existing
operationSet open. The method returns a
reference to the IDMLBook.

openRefreshOperation(timestamp) Begin a refresh operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IDMLBook.

Managed element properties and methods
You can use the properties and methods described in this section to create managed elements and add
and retrieve associated attributes.

Properties

Table 7 on page 15 describes the managed element properties for the DLA book production API.

Table 7. Managed element properties

Property Description

type The class type of the managed element.

id A string that uniquely identifies the managed
element within the IDMLBook.

attributes A list of scalar attributes of the managed element.
Each item in the list must be of type IDMLAttribute.

Methods

Table 8 on page 15 describes the managed element methods.

Table 8. Managed element methods

Method Description

addAttribute(attribute) Add an attribute to the IDMLManagedElement
attribute list. The method returns a reference to
the IDMLManagedElement.

addAttribute(name, value) Add an attribute with the specified name and value
to the IDMLManagedElement attribute list. The
method returns a reference to the
IDMLManagedElement.

Chapter 1. Discovery Library Adapter Developer's Guide 15

Table 8. Managed element methods (continued)

Method Description

create(type, id) This is a class scope method that creates an
instance of the IDMLManagedElement class using
the following parameters:

type
The class of the managed element. It is the
responsibility of the caller to ensure that this is
a defined class in the model schema of the
IDMLBook to which the managed element will
be written.

id
Uniquely identifies the managed element
within the IDMLBook. The source and target
properties of the IDMLRelationship object
refers to this value. The identifier does not
need to be globally unique since it is used only
within the IDMLBook. While the size of the id
string is not bounded, you should use small
strings to identify managed elements within an
IDMLBook.

create(type, id, attributes) This is a class scope method that accepts a list of
attributes as a parameter and creates an instance
of the IDMLManagedElement class. The list is
copied into the IDMLManagedElement instance
attribute list.

getAttributes() Retrieve the list of attributes of the
IDMLManagedElement.

getId() Retrieve the ID property of the
IDMLManagedElement.

getType() Retrieve the type property of the
IDMLManagedElement.

Attribute properties and methods
You can use the properties and methods described in this section to create attributes associated with
managed elements.

Properties

Table 9 on page 16 describes the attribute properties for the DLA production API.

Table 9. Attribute properties

Property Description

name The attribute name.

value The attribute value.

16 Application Dependency Discovery Manager: DLA Developer's Guide

Methods

Table 10 on page 17 describes the attribute methods.

Table 10. Attribute methods

Method Description

create(name, type, value) This is a class scope method that creates an
instance of IDMLAttribute using the following
parameters:

name
The name of the attribute. It is the
responsibility of the caller to ensure that the
name is valid for the IDMLManagedElement to
which the IDMLAttribute is being added.

type
The type of the attribute.

value
The value of the attribute.

getName() Retrieve the name property.

getValue() Retrieve the value property.

Relationship properties and methods
You can use the properties and methods described in this section to create relationships between
managed elements.

Properties

Table 11 on page 17 describes the relationship properties for the DLA production API.

Table 11. Relationship properties

Property Description

type The relationship type.

source The identifier of the source IDMLManagedElement
of the relationship.

target The identifier of the target IDMLManagedElement
of the relationship.

Methods

Table 12 on page 18 describes the relationship methods.

Chapter 1. Discovery Library Adapter Developer's Guide 17

Table 12. Relationship methods

Method Description

create(type, source, target) This is a class scope method that creates an
instance of IDMLRelationship by using the
following parameters:

type
The type of the relationship. It is the
responsibility of the caller to ensure that this
value is a defined relationship type in the
model schema of the IDMLBook to which the
relationship is being written.

source
The ID property of the IDMLManagedElement
that is the source of the relationship. It is the
responsibility of the caller to ensure that a
relationship is written to the IDMLBook after
both the source and target
IDMLManagedElements have been written.

target
The ID property of the IDMLManagedElement
that is the target of the relationship. It is the
responsibility of the caller to ensure that a
relationship is written to the IDMLBook after
both the source and target
IDMLManagedElements have been written.

create(type, source, target) This is a class scope method that creates an
instance of IDMLRelationship. This method is
similar to create(type, source, target) except that
the source and target parameters are specified as
strings instead of identifiers.

getSource() Retrieve the property containing the source
identifier.

getTarget() Retrieve the property containing the target
identifier.

getType() Retrieve the type property.

Common Data Model helper methods
The idml_schema_2.4.jar file provides additional helper methods for working with metadata specific to
the Common Data Model.

You can use the application programming interfaces in this .jar file in the creation of a Discovery Library
Adapter; these methods simplify integration and use of the Common Data Model.

To use these methods, use the Common Data Model helper class setter methods for the metadata you
want to work with. For example, you might use the addComputerSystem(ComputerSystem) helper
method instead of the generic addManagedElement(managedElement) method.

18 Application Dependency Discovery Manager: DLA Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

© Copyright IBM Corp. 2006, 2020 19

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM‘s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information in softcopy form, the photographs and color illustrations might not be
displayed.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks of others.

20 Application Dependency Discovery Manager: DLA Developer's Guide

http://www.ibm.com/legal/copytrade.shtml

IBM®

	Contents
	Tables
	About this information
	Conventions used in this information center
	Terms and definitions

	Chapter 1. Discovery Library Adapter Developer's Guide
	Using Discovery Library Adapters
	Discovery Library Adapter overview
	IdML schema
	When to use a Discovery Library Adapter
	File naming conventions
	Integration overview
	Creating a Discovery Library Adapter
	IBM Discovery Library IdML Certification tool

	Understanding the DLA APIs
	Using the DLA adapter API
	Managing configuration parameters and discoveries
	Managing property change listeners
	Managing Discovery Library Adapter states
	Using the DLA Book Production API
	Book properties and methods
	Managed element properties and methods
	Attribute properties and methods
	Relationship properties and methods
	Common Data Model helper methods

	Notices
	Trademarks

